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Abstract. A quantum liquid of an almost ideal Bose gas brought into rotation is
investigated from a physical and mechanical point of view on the basis of the Gross-
Pitaevskii (GP) equation by applying a quantum-mechanical scenario, i.e. the London’s
scenario. This scenario allows a superfluid to have rotational states. Considering that
the equation governs an interacting Bose gas, it is proposed that the GP equation admits
rotational flows of a superfluid. This is carried out without incurring essential change of
the equation. By this reformulation, a superfluid placed in a rotating vessel is able to
have a solid body rotation with the same angular velocity as its container and also to have
a meniscus approximated by a parabolic profile. The solid body rotation is accompanied
by density increase proportional to the square of its angular velocity. These are consistent,
with experimental observations. In addition, this formulation allows a vortex of quantized
circulation with coaxial rotational core whose density does not necessarily vanish at its
center.
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1. Introduction

In view of recent renewing studies of interacting Bose gases in rotation at extremely low
temperatures, we consider a possible reformulation of a quantum condensate brought into
rotation on the basis of the Gross-Pitaevskii equation without incurring essential change.

Some early experimental studies of rotating helium IT (Osborne 1950, Andronikashvili
and Kaverkin 1955) showed that the quantum liquid appeared to be rotating uniformly as
a whole in a rotating container. The idea of a quantum vortex in rotating superfluid was
proposed by Onsager (1949) and Feynman (1955). According to them, the vortex induces
a potential flow around it with its circulation quantized and with the density vanishing
at its center. At sufficiently fast rotation, the quantum vortices form a lattice that
imitates on average the solid body rotation (Andronikashvili et al 1961, Andronikashvili
and Mamaladze 1966). This is understood as follows. The rotating superfluid is threaded
by a lattice of quantized potential vortices in a manner which rotates as a whole (Donnelly
1991). In §2 of this paper, we reconsider whether the vortices are characterized by
potential flows only and propose possibility of having a rotational core.

Although their approach is different from the present study, the same subject of
possibility for a quantum liquid to be in a rotational state was studied recently by
Greenberg and Zelevinsky (2012). Our approach however is motivated by a recent new
representation of rotational flows of an ordinary fluid (Kambe 2013), which satisfies Euler’s
equation of motion of a compressible ideal fluid. Note that the system of equations derived
from the Gross and Pitaevskii (Gross 1961, Pitaevskii 1961) have analogous form to that
of rotational flows of an ordinary inviscid fluid.

In the present study we consider a quantum liquid, i.e. a degenerate state of an
interacting Bose gas of mass m, which is governed by the Gross-Pitaevskii equation. On
the basis of the Lagrangian formulation of particle mechanics in rotating frame and also
corresponding formulation of quantum mechanics, we find a certain type of rotational
state that does not necessarily result in formation of potential vortices (but a solution
of the potential vortex is not excluded). Section 3 investigates its formulation. Some
examples of solution resulting from the formulation are presented for solid-body rotation
of a quantum liquid in §4 and for quantum vortices with coaxial rotational core in §5.

1.1. Superfluids

Firstly we review past studies on the superfluids brought into rotation, and pose a question
whether the theory of potential vortices only can explain all. We consider possibility if
rotational state is allowed for a degenerate almost ideal Bose gas at absolute zero within
the current framework of the Gross-Pitaevskii system. (For a degenerate almost ideal
Bose gas, see Lifshitz and Pitaevskii (1980) §25.)

(a) Regarding the solid-body rotation of superfluids, there exist some experimental
evidences. Tkachenko (1966) showed that the superfluid behaved like a fluid rotating with
the velocity of a solid body at a macroscopic level. There is a critical angular velocity €2,
of a rotating vessel for vortex formation. General understanding of a superfluid in a fast



rotating vessel is that the rotating liquid forms a lattice of quantum vortices.

By their experimental study, Andronikashvili and Tsakadze (1965a, b) showed that
the helium II (i.e. the liquid helium below the A-point temperature) brought into motion
in a rotating vessel increases its density appreciably. This fact urges more careful study of
rotating quantum condensates because the structure of vortex lattice with density defect
at the vortex centers implies reduction of the density of helium II. There must be an
unknown effect that compensates the density reduction at the lattice points if the theory
of potential vortices is the only valid one. In regard to the helium I of normal fluid,
appreciable increase of the density is not observed by the increase of angular velocity.
Section 4 gives a clue to this problem.

(b) Experimental investigations of rotating helium II in early times (Osborne 1950,
Andronikashvili and Kaverkin 1955, Donnelly et al 1956) showed that the quantum liquid
He I in a rotating vessel formed a meniscus as if it is a normal fluid undergoing solid-body
rotation. In fact, the meniscus, i.e. the shape of free surface, of rotating helium II was
given by the same parabolic height as that of the normal fluid with respect to the distance
from the rotation axis. This implies that the superfluid component is participating in the
rotation. This was also observed in the experiments of rotating He II by Hall and Vinen
(1955). Measurement of the angular momentum of rotating helium IT showed also that
the liquid motion corresponds to the solid body rotation (Reppy et al 1960). Kiknadze et
al (1965) showed that two-dimensional vortex lattices in rotating helium IT are capable of
rotation together with its rotating vessel.

(¢) Note that the study of Kiknadze et al (1965) took analogy with the theory of type
IT superconductors of Abrikosov (1957). A type-II superconductor is characterized by the
formation of magnetic vortices in an applied magnetic field. This occurs above a certain
critical strength H,. of applied magnetic field. The theory of type-IT superconductor in
magnetic field was developed by Abrikosov, who applied the ideas of Onsager-Feynman’s
quantum vortices of superfluids to the lines of magnetic flux passing through the material.
The region of lines of magnetic flux is surrounded by a circulating supercurrent of
electrons. In analogy with the superfluid, the swirling supercurrent creates the so-called
Abrikosov vorter. He found that the vortices arrange themselves into a regular array.
Density distribution of superconducting electron coincides exactly with that of a superfluid
in corresponding regular array of vortices. There is a close analogy between the Abrikosov
vortex of type-II superconductor and the Onsager-Feynman vortex of superfluid.

In the case of type-II superconductor, a flux of magnetic lines of force passes through
the superconducting material. It would be interesting to consider whether this implies
that a flux of vortex lines passes through the superfluid and forms a vortex of quantized
circulation with a rotational core. In this regard, Andronikashvili and Kavelkin (1955),
cited by Andronikashvili and Mamaladze (1966), describes their experiment of a helium
IT in a container which was brought into rotation from the state at rest. Dragging of
the fluid into rotation is observed to be different between He I (ordinary fluid) and He II
(superfluid). In the case of He II, i.e. the quantum condensate, only its peripheral layers
were dragged into rotation at first, while the central part of the meniscus remained flat.



Gradually the radius of the flat part of the meniscus became smaller and at last a parabolic
free surface was formed. It was indistinguishable from the parabolic meniscus of a classical
viscous liquids at moderate velocities of rotation. This observation implies that vertical
vortex lines gradually penetrate into the liquid helium from the peripheral layers inward.
This reminds us of the penetration of magnetic lines in the type-II superconductor. They
concludes at the end that the superfluid component maintains motion for which curl v,
differs from zero (where v, denotes the velocity of superfluid component).

Section 5 presents an example of quantum vortices with coaxial rotational core, whose
density does not vanish at its center. Jackson et al (2009) and also Allen et al (2013)
studied finite-temperature effect on vortex dynamics and found non-vanishing density at
the vortex core which is a thermal cloud owing to the finite temperature. However, in the
present, case, the rotational core is obtained by solving the Gross-Pitaevskii equation at
the absolute zero temperature.

1.2. London’s scenario

Thus in this paper, we consider how a quantum condensate is endowed mathematically
with rotational state. In early times of quantum mechanics, London (1927) proposed
a scenario to improve Schrodinger’s quantum mechanics and succeeded in introducing
electromagnetism into the Schrodinger system [see O’Raifeartaigh (1997)]. We consider
analogous scenario to endow a superfluid with rotational property. Although it is usually
considered that the Gross and Pitaevskii equation (GP equation in short) implies potential
flows of superfluid, we investigate a possibility that a quantum liquid governed by the GP
equation may support rotational motion. By the London’s scenario applied to the GP
equation, it is shown in §2.3 that the same equation can describe rotational motions
of superfluid. This is not surprising because the non-linearity of the Gross-Pitaevskii
equation has its origin in the interaction between two particles in the condensate.

2. Gross-Pitaevskii equation

We consider a quantum condensate of almost ideal Bose gas of atomic mass m. There exist
interactions between atoms, represented by a short-range interatomic potential Uy d(x),
which is repulsive if Uy is positive. The coefficient Uy is given by Uy = 4mwh?a/m with a
the s-wave scattering length and i = h/27 with h the Planck constant. In such a slightly
non-ideal Bose gas at absolute zero temperature, almost all the particles, but not all, are

A

in the condensate. A wave function operator is written as ¥(z,t) = ¥(z,t) + V'(x, 1)
where W = (W) is the order parameter (the symbol ( - ) denoting ensemble average). The
condensate wave function W describes the mode that has macroscopic occupation with

|U|?> = n(x) giving the condensate particle number density at .

2.1. Equation of a condensate of almost ideal Bose gas

If only pair interactions are taken into account, the equation governing W is given by
the Gross-Pitaevskii equation. In fact, in a trap with confining external potential V,, the
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Gross-Pitaevskii energy functional for the condensate (Fetter 2009) is defined by
h2
Eap = / <% VU + V, [¥]” + 1 U, |x1f|4) d’x. (1)

The total particle number is defined by N = [ |¥|2d*z. Minimizing £sp — uN under the
constraint condition N = const , we obtain the following Gross-Pitaevskii equation:

— (2 /2m) V20 + (Uy [0 + V, = ) W =0, 2)

(Ginzburg and Pitaevskii 1958, Gross 1961, Pitaevskii 1961), where p is a chemical
potential. In the uniform stationary state of |¥| = \/ng = const in the constant negative
potential V, = —n (where n > 0), in which V¥ = 0, it is immediately seen from (2) that
we have Upng = p + 1. The Gross-Pitaevskii (GP) equation assumes: (i) there exist a
large macroscopic number of Bose atoms in the ground state (i.e. in the condensate) at
absolute zero temperature, (ii) (¥'(x,t)) is negligible in comparison with ¥ = (¥), and
(77i) the inter-particle spacing (~ nal/g) is much larger than a. The conditions (i) and

(17) are referred to as those for a slightly non-ideal or almost ideal Bose gas.

2.2. Time-dependent Gross-Pitaevskii equation

The equation (2) can be generalized to the following time-dependent GP equation:
ihOY = (2 /2m) V20 + (Up (W + V. ) ¥, (3)

where 9, = 0/0t, and ¥ now depends on ¢ as well as on x.§

The non-idealness of the Bose gas causes the presence of particles with non-zero
momentum even at absolute zero because of the interaction potential Uy d(x) (see e.g.
Lifshitz and Pitaevskii (1980) §25).|] This GP picture remarkably fits to the system of
dilute ultracold trapped alkali-metal gases, developed since 1995.

Bogoliubov (1947) introduced an essential mechanism of such a system of a dilute
Bose gas of repulsive interactions (see Lifshitz and Pitaevskii (1980) Chap.III). It is
particularly remarkable that the existence of superfluidity in a uniform dilute Bose gas
arises indeed from the repulsive interactions, since the Landau critical velocity is given
by v. = \/Upng/m, which vanishes for Uy = 0 (Fetter 2009).

Expressing U with a complex polar form W = |¥| exp (ip), substituting it in (3),
and dividing the resulting expression into imaginary and real parts, we have

h h
20,|0| 42— V|¥|- Vo + — |¥|V?p =0, (4)
m m

n? n? V2|0
h — 2_ 2

+V, + U9 =0. (5)

The mass probability density p is defined by p = m|¥|?. Introducing a function ® by
@ = (m/h)®, a current vector of velocity u can be defined by
u=Vao, o = (h/m) . (6)

§ Comparison of (2) and (3) implies that a stationary solution has the time factor exp[—iut/h].
|| By collision of two particles of momenta p;, = 0 and p, = 0 in the condensate of non-ideal Bose gas,
there exists non-zero probability of transition to new states of pj = p # 0 and p), = —p, respectively.
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Then the first equation (multiplied by m|¥|) can be transformed to

0ip+V - (pu) = 0, (7)
i.e. the continuity equation. The second (divided by m) can be rewritten as

Oi® + 5 u? + hoy + hgm + Ve/m =0, (8)

hat = (Uo/m?) p, - ham = — (17 /2m*)(|¥] "1 V*|]). (9)

2.3. Non-integrable factor to represent rotational flows

In quantum mechanics, the electromagnetism is introduced into the Schrédinger system.
This was first proposed by London (1927) by applying an ingenious mathematics to
reformulate the Schrodinger equation. In this subsection we attempt to introduce
rotational property by applying an analogous mathematical scenario to the GP system of
superfluid. An alternative formulation is given in the next section §3.

In quantum mechanics, a momentum p is represented by the operator —iAV.
However, the motion of a charged particle (of electric charge e) in an electromagnetic
field (represented by a vector potential A(x,t)), the momentum should be replaced by

p—A=—inv—A=—in (v - z'iA), (10)
c c he
(Landau and Lifshitz 1977 §111). This is equivalent to the following replacement:
Vo>Dy=V-— ihiA (a covariant derivative). (11)
c

Namely, the space derivative V should be replaced by the covariant derivative V —
i(e/hc) A, together with the time derivative 0; replaced by 0; + i(e/h)¢ (where ¢ is an
electric scalar potential). For the Schrodinger system represented by the equation such
as (3), the above replacement is equivalent to the replacement of W:

T(z) — exp [zhi ol (@), A0t =4, ", (12)
C

where four vectors are introduced by A, = (—¢, A) and 27 = (ct,x) with A and =
three vectors. In fact, the factor (e/hc) * is called the London’s phase factor introducing
electromagnetism into the Schrédinger system (O’Raifeartaigh 1997).

Using structural analogy of the present system with the Schrodinger system, we follow
the formulation of quantum mechanics. It is observed that the current field would not be
singly connected when there exists a potential vortex, because its axis is characterized as
a line singularity. In order to accommodate vortices, it is proposed that the wave function
U = || exp [i(m/h)®] of (3) is extended to U* with an extended phase factor (m/h)®*
in stead of (m/h)®, where

. _ R _ m
T = exp [z o ] U(z) = [U|(t,2) exp [z - @], (13)
dO = dd + dd*, d®* = wy dat + wsy dz? + ws da?, (14)

and d® = 9, P dat + 0, da? + 93P da®. The expression of d© implies that the current
density v, = (ih/2m)(T*VE* — U*VI*) is given by |U[?VO = [V|>(VP + w), and the
generalized momentum p is given by

pP=mv.=pv, v=VP+w, w=(w,wy,ws). (15)
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It is found that the potential velocity w = V& of (6) is now replaced by a rotational
velocity v. In place of (6)~(8), we have an extended system of equations:

v=VOo+w, Op+V-(pv)=0, &P+ Lv’+hy+hqm+Ve/m = const,(16)

where w = (w; (), wa(x), ws(x)). Here, we define a differential one-form V! by v da!
+voda? + vgda?. If VI is an exact differential (by w = 0), i.e. if VI = d®, then it
defines the potential velocity v = V®. However, if V() is not an exact differential, namely
if

o =3 (ajwk — akwj) dad A dxk‘ A0,

we have a rotational flow v of vorticity w = V X w, since its i-th component is

Jj<

W; = Ei]‘kaj’wk (: 8jwk — 8kw])
In this reformulation, the original momentum —ifiV (ip) = mV® is replaced by
—ihV|[(im/h)O] = —ih[V (ip) + i(m/h) w] = mV® + mw.
Equivalently, the ¥V operator of (3) is replaced by the covariant derivative D,,:
V>D,=V+ z% w (a covariant derivative). (17)
This is analogous to (11) of the electromagnetic case, and mw corresponds to the
electromagnetic momentum —(e/c)A. Note that the vector w denotes a current velocity

of rotational motion. Thus, a rotational component is introduced into the GP system.
This implies that the GP equation can support rotational motion in general.

3. Rotational state of an almost ideal Bose condensate

We consider extension of the GP equation to that for a rotating frame with a different
approach. Beginning with the particle mechanics of §3.1, we extend it to its quantum
mechanical formulation for a rotating frame and in §3.2 apply it to description of a
rotational state of an interacting Bose gas. Here, an important remark is to be made
from a physical point of view on possible macroscopic motions. Namely, a closed system
in thermodynamic equilibrium can take only two states: uniform translation or uniform
rotation (Landau and Lifshitz (1980) §10). Therefore, we consider possibility of solid body
rotation of a macroscopic condensate, in addition to a static state or uniform translation.

3.1. Mechanics of a point mass in a rotating frame

Suppose that a particle of mass m is moving with a velocity v, in a potential field V' in
a fixed inertial frame of reference K,. In the mechanics, the Lagrangian of the particle
motion is given by £y =  mv§ — V.9q The momentum and energy of the particle are

pozaﬁg/avozmvo, Egzpo-vg—ﬁgzémvg—i—V,

q By the particle trajectory ¢'(t), the velocity and momentum are given by v¢ = ¢’ and p{ = 0Ly /d¢".
0 0
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in the frame K. Concerning the same motion, let us take another frame of reference K
which is rotating relative to K, with an angular velocity €2 around the common origin.
The particle velocity is now vg relative to K, and vg is composed of two components:

vy =V + QX x=vg + wq, wo =N X x,
where wq, is the velocity of the frame rotation at the position . The Lagrangian in K is
EK:%mv%—l—va-'wQ—l—%mw?z—V. (18)

Generalized momentum p, and energy £ in the frame K are
0Lk
K 81}K

Thus, the momentum p; and angular momentum M x = & X py are the same as p, and

p = mug+mwq = mvy, Ex =pg-vx—Lrx = 1mvy—1imws+V.(19)

M, = x x p,, while £k is different from &,. Substituting vg = vy — wq, we obtain
Ex =imui+V —muy- (@ xz) =& — Q- M,.
Thus the energy is transformed according to Exg = Eg — Q- M.

3.2. FEquation of order parameter in a rotating frame

We try to extend the energy functional (1) of the superfluid to that in a rotating frame.
A superfluid in the rotating frame is described by an order parameter ) determined by
minimizing an energy functional corresponding to the energy £y — € - M (Lifshitz and
Pitaevskii (1980) §29). The mechanical energy £y — Q - M can be rewritten as

1
%mv%—l—V—Q-(wxmvg):%(mvg—mwQ)Z—%mwéwLV. (20)

It is noted that the term in the parenthesis on the right hand side is the linear momentum
mu in the rotating frame K:

mvy — mwqg = MUk. (21)
In quantum mechanics, the linear momentum p = mw, and angular momentum M =
T X mwg are expressed by p = —ihV and M = —ihax x V, respectively. Therefore, the
above relation (21) may be written quantum-mechanically as

—ihVy — mwq = —ihV g, equivalently Vi = Vg — z%wg (22)

The symbols Vy and Vg are the nabla’s with respect to the frames Ky and K. Let us
extend the energy Eqp of (1) to that of a rotating frame. Corresponding to the right-hand
side of (20), a quantum-mechanical energy £gp, in a rotating frame is given by

Ecpr = /d%bi (—1)?

m

2
(190-+mwa) |+~ mwd+ V. ) [W+1 s [0]*],(23)

where V, is used in place of V, and the self-interaction term 1 Uy |¢|* is added. This form
is used in the studies of bosons in rapid rotation by Fischer and Baym (2003), and by
Correggi et al (2007). On the other hand, corresponding to the left-hand side of (20), we
have an alternative expression £ p, for the quantum-mechanical energy:

/ 1 . 7
o = [ = b Voul Vel L Ul ] - [Mu da @y
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where ¢ is the complex conjugate of 1.
In the non-rotating frame, the expression (23) reduces to (1) since wg = 0. Variation
of £gp, — N under the subsidiary condition of fixed N = [ [¢[2d*z yields

%(ihvo+mwg)2w+ (—%mw%+%>w+U0|w|2w:m/). (25)

This is the GP equation in a rotating frame with the angular velocity . An equivalent
equation was given by Yngvason (2008). This reduces to (2) in the rest frame when
wq = 0. In view of (22), the equation (25) can be written as

— (2 /2m) Vi) — Emwd p + (Vo + Uo [0f?) ¢ = o (26)

Since V2% is a scalar product of V operator, we have invariance of the scalar V3 = V3
by rotational transformation between two frames Ky and K, which can be written simply
as V2. Thus, we have the equation governing a quantum condensate in the frame rotating
with wo = Q2 x x:

—(72/2m) V2 — Emwd g+ (Ve + U [0) ¥ = (27)

In §4, this equation will be applied to two problems related to the issues (a) and (b) of
§1.1, i.e. density increase and parabolic meniscus of a condensate in a rotating vessel.

3.3. Extension to a rotational quantum liquid

Now, we attempt to generalize the formulation to rotational states in general, whose
velocity v is composed of a potential component V@ and rotational component w,: i.e.
v = V& +w,. Its vorticity w(x) = V X w,(x) represents local rotation of the fluid with
the angular velocity Q*(z) = § w(x) at a point . We apply the principle of local gauge
symmetry to the rotational flow. The idea is as follows.

Consider a collection of local frames K* rotating with local angular velocity Q*(x) at
each point x of the flow field. By the principle of local gauge symmetry™, the expression of
the first two terms of (26), defined by @2, would be Qy = —(h?/2m) Vi.¢p — 3 m(wq-)? ¢
where wgq- is the velocity of local rotation. To transform it back to non-rotating frame, we
note that, relative to the frame K™, the non-rotating frame is rotating with the velocity
—wgq-. Hence the transformed @, is expressed by —(h?/2m) (V + i(m/h)wq-)*y (by
the second of (22) where V| is written simply as V and wq is replaced by —wgq-). The
last expression can be written as —(h%/2m) (V + i(m/h)w,)*, because the difference
w, — wq- is irrotational and can be absorbed in V. Thus, instead of the operator V
of (3), we propose the covariant derivative D,, of (17) for rotational states under the
principle of local gauge symmetry:

VD, =V+ z%w (28)

* The equation (26) is valid in the rotating frame K where all the points of K are related to those of K,
by rotational transformation as a whole under the common angular velocity €2. This is called the global
rotational transformation. The equation is said to have global gauge symmetry. The gauge principle

requires local gauge symmetry as well for local rotational transformation under local angular velocity
Q*(x). The local means point-wise in this case.



Thus for rotational states, the GP equation (3) is transformed to
ihoW = —(12/2m) (V + i%wr)Q\If + (Ve+ U wP?) w, (29)
under an external potential V.. Instead of (2), its time-independent version is given by
— (1 /2m) (V + w2 + (Ve Us [92 = ) 6 = 0. (30)

In §5, this equation will be applied to a problem related to the issue (¢) of §1.1, i.e. a
quantized vortex with coaxial rotational core.

4. Density change by rotation

By their experiment, Andronikashvili and Tsakadze (1965a, b) showed that the quantum
liquid He IT brought into motion in a rotating vessel increases its density in proportion to
nearly square of angular velocity €2 of the rotation. This is not recognized sufficiently by
most texts in general. The equation (27) gives us some insight into this observed property
because it is the equation with respect to a rotating frame.

Suppose that the condensate is at rest in a rotating cylinder of radius R without
forming vortices. Then the wave function ¢ of (27) should be real and approximated by a
linear behavior by, where r is the radial distance from the rotation axis with b, a constant
(this is checked just below). Then from the equation (27), we obtain

Ve + U [ & 3 mQ%r® + p+ (§/r)? Ugn, (31)
. (32)
Vv 2mUyny

where ¢ is the healing length. The last term of (31) came from (h*/2m)V?¢ /v, where
V29 /1 is replaced with (byr) 'V2(byr) = 1/r?, and the coefficient (h%/2m) is replaced
with £2Uyng by using (32). The last term may be neglected if r > £. Then, the right
hand side tends to be proportional to r? as r becomes much larger than /2u/m Q1.
This is consistent with the original assumption ¢» o< » when the external potential V, is a
constant and (b;7)? > |V,|/Us. The term [¢)|> on the left hand side is the particle number
density n. Hence, n = [1)|? oc Q%r? for large 7, which is consistent with the observation of

Andronikashvili and Tsakadze, noted above.

Next, we consider that V, is the gravitational potential V, = mgz. On the free
surface, i.e. on the meniscus z = z,, of the condensate, we have |¢|(z = 2,,) = 0. Then
we obtain z,, ~ (2?/2¢g) r* + const from (31). This is consistent with the experiment of
Andronikashvili and Kaverkin (1955), observing that the depth of the meniscus did not
depart from the parabolic depth of normal liquids.

5. A quantized vortex with rotational core

Next example is a quantized vortex with a coaxial rotational core. The wave function is
expressed by 1 = [¢(r)|e"? in the cylindrical frame (z,7,¢). In the case of a single
quantization (i.e. k = 1), we have ©» = [¢(r)]e* for a quantized vortex (having a
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rotational core of a size ¢). Namely, far from the vortex core (for r/0 > 1), the flow
tends to a potential flow asymptotically, expressed by a velocity potential ® = v of a
quantized circulation 27y = h/m (i.e. v — V®). Its rotational core is assumed to have
a velocity w, represented by a Gaussian profile:

2

g
w, = (0,0,w,), Wy == exp[—ﬁ], v = h/m,
where ¢ is a scale of the rotational core. Total velocity and vorticity are
T 1 _»
v=Vo+w,=(0,0,7W.(r)), Wir)=-——€e", n=r/o, (33)
T
1 27 )
w = (w.(r), 0, 0), wc(r):fy—ar(rW*)zﬁe . (34)
r

This represents a quantized vortex with a rotational core of strength 27y. Close to the
center, total velocity is expressed as YW, (r) = (v/6%)[r + (r®)], which tends to 0 as
r — 0. Thus, the velocity is regularized at the center, while the velocity of a potential
vortex diverges like 7= as r — 0.

5.1. Governing equation

Governing equation of 1 is given by (30). Substituting ¢ = |¢/| €’, the imaginary part
(of the coefficient of €¥) describes the continuity equation as before, and the real part is

2miy 2mU,
V2| = W2(r) ]+ T [l = = e = o, (35)

where || = |¢(r)|, and p, = p — V.. The external confining potential V, is assumed to

be a negative constant, such that p, > 0. Let us define ng = p./Us which denotes the
particle number density in uniform state at rest (when U, > 0). In fact, in a uniform
state at rest (where V?[¢)| = 0 and W,(r) = 0), we have |¢|> = . /Uy = const from (35).

The length is normalized by the healing length & of (32), and the velocity by
v = h/m&. Normalized amplitude A and radial coordinate ¢ are defined by

A = ||/ /o, ¢=r/s, (36)

respectively. By these normalizations, the equation (35) reduces to

VEA-WF () A+A—- A" =0, (37)
r 1 _, 1 > - -
= _ _ _p7N e _ N — —
WO =g- e =c(1-e), = F=de (38)
In the present axisymmetric case, this is written as
1
A”(C)+ZA’(C)+A— WZ(()A—A*=0. (39)

The equation for the amplitude A,(¢) of a potential vortex (without rotational core) is
immediately obtained from (39) by simply replacing Wj(¢) with 1/¢, which is given by

1 1
¢ ¢
(Ginzburg and Pitaevskii 1958, Lifshitz and Pitaevskii 1980, §30).

AN+ A+ A — 5 4, — A =0, (40)
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5.2. Power series solution for ( < 1

We seek a power series solution to Eq. (39) by using the series expansion of W (():

:loo k+177 _ __3 B?) ......
Ckz = B¢ Gt :

where 3 = (£/0)?, and expressing A by the form: A = by + by(? + byC* + bC® +
Substituting these in (39) and replacing by by AO, the coefficients are determined by

1 3
b= =7 A(1— 4}, b A0< + 80— A3+ T AL,
1
by = 25 (=bi+ B%by — 3° Ag + 3A0b§ +3A5by), e e
If Agp = A(0) = 0, we have the zero solution A({) = 0. Hence in order to have a
sensible solution, Ay must be non-zero. This is remarkable, since it is well known that the
amplitude A,(¢) of the potential vortex tends to zero like by ¢ as ¢ — 0 with b; a constant

(see §5.3 (a)). This implies that the extended form of GP equation (30) permits a solution
of a quantized vortex with a rotational core with non-zero number density |¢/(0)|? # 0.

5.3. Numerical solutions

(a) Potential vortex with quantized circulation: The amplitude A,(() is found numerically
by solving the second-order differential equation (40) with the boundary conditions:
A,(0) = 0 and A,(¢) — 1 as ¢ — oo . In this solution, it is found that A, ~ b,( as
¢ > 0and A, ~ 1 —(1/2)¢ ? as ( — oo (Lifshitz and Pitaevskii (1980) §30). The
constant by is determined numerically as 0.583190 to the first six digits.

(b) Quantum vortex with rotational core: By giving the value A(0) = Ay at ¢ = 0 initially,
the ordinary second-order differential equation (39) was solved. The solution was sought
by varying the numerical value of 6 = §/¢ (the width of rotational core) with the trial-
and-error method for a fixed Ay so as to satisfy the condition at infinity: A({) — 1 as
¢ — oo (by the Mathematica). Corresponding to each particular value of Ay, the solution
has been determined. Numerical parameters of some of the numerical solutions are listed
in the Table 1.

Table 1. Parameters of numerical solutions, where AEs=E5s— &
and & is the total energy of a vortex of core size §).

Ay ‘ 0 0.01 0.10 0.20 0.25 0.30 0.40

§=46/6 | 0 0.009 0.08 0.169 0.209 0.249  0.330
A€s x 10° | 0 —0.003 —0.213 —0.528 —0.539 —0.363 +0.710

Figure 1 shows the amplitude A(¢) of the case (4y = 0.25, § = 0.20894) by a solid
curve a, which is compared with the potential vortex plotted by a broken curve b. In
this figure, the vorticity w.(¢) is also plotted by a dotted curve ¢, with a different vertical
scale. It is seen that far from the core (r > ), the two solutions a and b tends to be
indistinguishable.
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Figure 1. Amplitude A(¢) of a quantum vortex with a rotational core (49 = 0.25, § =
0.20894) is shown by the solid curve a, whereas the potential vortex A, (¢) by the broken
curve b. The curve ¢ at the bottom shows the vorticity w.(¢) with a different vertical
scale. Two dotted vertical lines d show the size § of coaxial rotational core.

5.4. Energy of vortices with rotational core

Thus, we have found a family of solutions depending on & (or Ay) and having different
values of total energy £s. Using (24), we take its variation with keeping the total angular
momentum M = f?/;MU) d*z fixed with a fixed . Hence we consider minimization of
the first integral of £, p, only with Vg replaced by D,, = V +i(m/h) w, of (28):

1 . m
IGPT:/d3$|:%|—Zh(v+2%wr)w|2+% U0|w|4 )

where the integration is taken over the plane perpendicular to the vortex axis, and the
V. term is neglected. Using the healing length £ and the particle number density ng in
the uniform state at rest, we normalize the wave function v and radial coordinate r like
= /ng ¢ and r = (. Substituting these, we have

h2
oo = a [ (€17 + w0 o+ S lol") e (a1)

2m h
In non-uniform states in motion, the first term of the integrand is a dimensionless kinetic
energy, denoted by . Writing as ¢ = A(r) exp[i ¢ ], the term £ [V +i(m/h)w,|¢ is

1V +ilm/B)w, |6 = (Ved) expli o]+ (Vi + w,) A() explig],

13



AEs x 103

¥

' 743

-1

E

i) 2

Figure 2. A&; x 10? (vertical) plotted vs. the core size parameter §/¢ (horizontal axis).

Defining ® = (h/m) ¢ and v = V®+w,, the second term is expressed as i(v/0) A expliy]
where v = fi/m&. Using u = v/v, we have

Ee= €|V +iTw)of = (VAP +]ul 42 = [WQOF +42 42, (12)

where A'(() = dA/d¢, and u = W;({) defined by (38). Denoting the integrand of (41) as
& for a quantized vortex of rotational core of size §, we have

E= AP+ WA+ A W= (/0 -e) ()

If we replace W5(C) of the second term with w = (!, we obtain the energy density &, of
the potential vortex of zero core-size:

, - 1
Eo=|A(OP +¢ AL+ §A§.

where A, denotes the amplitude of the potential vortex. Total angular momentum M is
given by (Mj,0,0), and Ms by nohi [ M;2r(d¢, where

Ms=CuA®,  My=A2

Using the numerical solutions obtained in the previous section §5.3, we can estimate the
total energy £5 = [ Es 2m¢d¢. In this numerical estimate, the upper end of integration
(m 1s chosen so as to fix the integration value fom M (d¢ of total angular momentum.
The (,,-value depends on 0 and was determined so as to take the same total angular
momentum as that of the potential vortex of 6 = 0 for which (,, = 5 was chosen.

Figure 2 shows the variation AEs = &5 — &y versus the normalized size §/¢ of
rotational core. It is interesting to find that there exists a minimum of A& at §/¢ ~ 0.2,
which is lower than AEs; = 0 of the potential vortex. This property is kept unchanged
qualitatively even if a larger value of (,, = 10 was taken. Thus, from the energy
consideration, it is probable that a vortex with a rotational core of /¢ ~ 0.2 is generated
in reality. Note that, for ¢ > £ (i.e. out of inner core), difference of the two solutions of
0 &~ 0.2¢ and the potential vortex of 6 = 0 is very small to such a degree that challenges
experimental resolution. Relative variation of |[AEs|/E5 is less than 0.001 when A&s < 0,
where &; ~ 5.816.
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6. Summary and discussions

It is proposed that the Gross-Pitaevskii equation governing a non-ideal (interacting) Bose
gas admits rotational flows. This is verified by applying a quantum-mechanical scenario
to the equation without incurring essential change in the equation, or alternatively by
introducing a local gauge transformation to the GP equation, with replacing the standard
momentum operator with a covariant derivative including a gauge field.

By this reformulation, a superfluid placed in a rotating vessel is able to have a solid
body rotation and also to have a meniscus approximated by a parabolic profile. The
solid body rotation is accompanied by density increase proportional to the square of its
angular velocity. This density increase is supported by the experimental observation of
Andronikashvili and Tsakadze (1965a, b). The parabolic meniscus was also observed by
various experiments cited in the article (b) of §1.1.

In addition, the reformulation allows a vortex of quantized circulation to have a
coazial rotational core. It is shown by numerical analysis that a vortex of core size
0 ~ 0.2¢ has the lowest total energy which is lower than that of a potential vortex
without rotational core.

If there is a rotational core in the vortex, the density does not vanish at its center.
Most observations report that there exist certainly dips in the density profiles. However,
to the author’s knowledge, no experiment reports that the density vanishes exactly at
the vortex center. If there is a rotational core, there may be observable consequences on
the dispersion relation of Kelvin waves (helical perturbations of the vortex), or on vortex
reconnection in superfluid.* This is considered in some detail next.

The vortex with a rotational core obtained in the present study has a core of size
d ~ 0.2£. The Gaussian profile (34) of the core vorticity is approximated by a constant
vorticity circular core of radius ¢ of the same strength in the following order estimate.
Suppose that the vortex filament is deformed into a helix of a wave number k. Then,
according to Thomson (1880), the dispersion relation is given by

(ws — wo) /wo = 1/(4L), wo=—3~vk*L, L=In(1/ké)+a

for very small k6 and o = 0.1159, where wy and ws are the angular frequency of a vortex
of hollow core and that of a rotational core respectively (both being roughly assumed to
be the same size § for simplicity reason). The negative sign of the wp-expression means
rotation in the reverse direction to that of fluid swirling around the filament.

According to the data of recent observation of Fonda et al (2012) in superfluid helium,
we estimate L ~ 14. Hence the relative difference is estimated as (ws — wy)/wo = 0.02.
This difference is challengingly small, ¢.e. it may be too small to be detected by
currently available experimental data. Another observable phenomenon may be the vortex
reconnection. This is important, but is out of our scope, because the vortex reconnection
is regarded as caused by diffusion effect, or by finite-temperature effect.

* This is one of the comments from a reviewer.
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